Isolation and Molecular Identification of Pseudomonas aeruginosa from Clinical Samples Using PCR
DOI:
https://doi.org/10.59675/P322Keywords:
virulence genes, lasB, exoS, multiplex PCR, Pseudomonas aeruginosa, clinical infections.Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen responsible for diverse hospital- and community-acquired infections, particularly in immunocompromised patients and those with burn wounds, chronic illnesses, or implanted medical devices. Its multidrug resistance and virulence factors, including elastase (lasB) and exotoxin S (exoS), complicate treatment and increase morbidity and mortality. This study aimed to isolate and characterize clinical P. aeruginosa strains from various infections in Ramadi Teaching Hospital and to determine the prevalence of lasB and exoS genes using multiplex PCR.
A total of 305 diabetic foot ulcer (n=80) burns (n=90), and postsurgical isolates (n=305) were obtained. wounds (n = 75) and otitis infections (n = 60). P. aeruginosa confirmed use. biochemical assay. LasB was identified in 44.9% and exoS in 24.6% of isolates using Multiplex PCR. Both genes exoS and lasB were the most detected. In contrast, otitis isolates contained low exoS but a high prevalence of lasB detection with percentages 17.8% andv89.2% respectively. Both diabetic foot ulcers and post-operative wounds showed high lasB and moderate exoS. The kind of infection and elastase functions lead to difference in exoS expression. In this study PCR demonstrates its ability for rapid, sensitive detection of virulent genes, supporting targeted therapy and enhanced infection control. Epidemiological insights and clinical strategist tar
References
Alemán-Duarte MI, Aguilar-Uscanga BR, García-Robles G, Ramírez-Salazar F de J, Benítez-García I, Balcázar-López E, et al. Improvement and Validation of a Genomic DNA Extraction Method for Human Breastmilk. Methods Protoc. 2023 Mar 26;6(2):34.
Alhogail S, Suaifan GARY, Bikker FJ, Kaman WE, Weber K, Cialla-May D, et al. Rapid Colorimetric Detection of Pseudomonas aeruginosa in Clinical Isolates Using a Magnetic Nanoparticle Biosensor. ACS Omega. 2019 Dec 24;4(26):21684–8.
Benie CKD, Dadié A, Guessennd N, N’gbesso-Kouadio NA, Kouame ND, N’golo DC, et al. Characterization of Virulence Potential of Pseudomonas aeruginosa Isolated from Bovine Meat, Fresh Fish, and Smoked Fish. Eur J Microbiol Immunol (Bp). 2017 Feb 27;7(1):55–64.
Chen JW, Lau YY, Krishnan T, Chan KG, Chang CY. Recent Advances in Molecular Diagnosis of Pseudomonas aeruginosa Infection by State-of-the-Art Genotyping Techniques. Front Microbiol. 2018 May 28;9:1104.
Deschaght P, Van daele S, De Baets F, Vaneechoutte M. PCR and the detection of Pseudomonas aeruginosa in respiratory samples of CF patients. A literature review. Journal of Cystic Fibrosis. 2011 Sept 1;10(5):293–7.
Edmiston CE, Garcia R, Barnden M, DeBaun B, Johnson HB. Rapid diagnostics for bloodstream infections: A primer for infection preventionists. American Journal of Infection Control. 2018 Sept 1;46(9):1060–8.
Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE. Multiplex PCR: Optimization and Application in Diagnostic Virology. Clin Microbiol Rev. 2000 Oct;13(4):559–70.
Ghanem SM, Abd El-Baky RM, Abourehab MAS, Fadl GFM, Gamil NGFM. Prevalence of Quorum Sensing and Virulence Factor Genes Among Pseudomonas aeruginosa Isolated from Patients Suffering from Different Infections and Their Association with Antimicrobial Resistance. Infect Drug Resist. 2023 Apr 21;16:2371–85.
Gholami A, Majidpour A, Talebi-Taher M, Boustanshenas M, Adabi M. PCR-based assay for the rapid and precise distinction of Pseudomonas aeruginosa from other Pseudomonas species recovered from burn patients. J Prev Med Hyg. 2016 June;57(2):E81–5.
Hassan KI, Rafik SA, Mussum K. Molecular identification of Pseudomonas aeruginosa isolated from Hospitals in the Kurdistan region. 2012;
Islam R, Ferdous FB, Hoque MN, Asif NA, Rana ML, Siddique MP, et al. Characterization of β-lactamase and virulence genes in Pseudomonas aeruginosa isolated from clinical, environmental, and poultry sources in Bangladesh. PLOS ONE. 2024 Apr 16;19(4):e0296542.
Johnson JK, Arduino SM, Stine OC, Johnson JA, Harris AD. Multilocus Sequence Typing Compared to Pulsed-Field Gel Electrophoresis for Molecular Typing of Pseudomonas aeruginosa. J Clin Microbiol. 2007 Nov;45(11):3707–12.
Johnson JR, Russo TA. Molecular Epidemiology of Extraintestinal Pathogenic Escherichia coli. EcoSal Plus. 8(1):10.1128/ecosalplus.ESP-0004–2017.
Khehra N, Padda IS, Zubair M. Polymerase Chain Reaction (PCR). In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 [cited 2025 Aug 31]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK589663/
Laborda P, Sanz-García F, Hernando-Amado S, Martínez JL. Pseudomonas aeruginosa: an antibiotic-resistant pathogen with environmental origin. Current Opinion in Microbiology. 2021 Dec;64:125–32.
Lebreton F, Snesrud E, Hall L, Mills E, Galac M, Stam J, et al. A panel of diverse Pseudomonas aeruginosa clinical isolates for research and development. JAC Antimicrob Resist. 2021 Dec 1;3(4):dlab179.
Maharjan N. Pseudomonas aeruginosa Isolates among Clinical Samples showing Growth in a Tertiary Care Centre: A Descriptive Cross-sectional Study. JNMA J Nepal Med Assoc. 2022 Aug;60(252):676–80.
Neoh H min, Tan XE, Sapri HF, Tan TL. Pulsed-field gel electrophoresis (PFGE): A review of the “gold standard” for bacterial typing and current alternatives. Infection, Genetics and Evolution. 2019 Oct 1;74:103935.
Pathmanathan SG, Samat NA, Mohamed R. Antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa from a Malaysian Hospital. Malays J Med Sci. 2009;16(2):27–32.
Schroth MN, Cho JJ, Green SK, Kominos SD, Microbiology Society Publishing. Epidemiology of Pseudomonas aeruginosa in agricultural areas*. Journal of Medical Microbiology. 2018;67(8):1191–201.
Spilker T, Coenye T, Vandamme P, LiPuma JJ. PCR-Based Assay for Differentiation of Pseudomonas aeruginosa from Other Pseudomonas Species Recovered from Cystic Fibrosis Patients. Journal of Clinical Microbiology. 2004 May;42(5):2074–9.
Wang C, Ye Q, Jiang A, Zhang J, Shang Y, Li F, et al. Pseudomonas aeruginosa Detection Using Conventional PCR and Quantitative Real-Time PCR Based on Species-Specific Novel Gene Targets Identified by Pangenome Analysis. Front Microbiol [Internet]. 2022 May 4 [cited 2025 Aug 30];13. Available from: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.820431/full
Wilson MG, Pandey S. Pseudomonas aeruginosa. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 [cited 2025 Aug 30]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK557831/
Yang S, Rothman RE. PCR-based diagnostics for infectious diseases uses, limitations, and future applications in acute-care settings. Lancet Infect Dis. 2004 June;4(6):337–48.
Zhang W, Qu H, Wu X, Shi J, Wang X. Rapid, sensitive, and user-friendly detection of Pseudomonas aeruginosa using the RPA/CRISPR/Cas12a system. BMC Infect Dis. 2024 Apr 30;24(1):458.
Almanseekanaa LH, Ali Alabbas AK, Kadhim NJ, Ogaili RH. Molecular study of Pseudomonas aeruginosa isolated from different clinical cases. Biochemical & Cellular Archives. 2021 Oct 1;21(2).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Academic International Journal of Pure Science

This work is licensed under a Creative Commons Attribution 4.0 International License.