Comparison Between Serological and Molecular Identification of Vibrio Cholera
DOI:
https://doi.org/10.59675/P125Keywords:
Cholera, Vibrio Cholerae, Global health, Serological techniques, Molecular techniquesAbstract
Cholera, caused by the bacterium Vibrio Cholerae, remains a critical global health issue, leading to significant morbidity and mortality. Traditional identification methods, primarily serological techniques, have been the standard for decades; however, the advent of molecular techniques has transformed pathogen detection, offering improved sensitivity and specificity. This study aims to systematically compare serological and molecular methods for identifying V. cholerae, focusing on their sensitivity, specificity, time efficiency, cost-effectiveness, and reliability across various sample types and conditions. Methods: Data were collected from 150 samples (100 clinical isolates from patients with cholera-like symptoms and 50 environmental samples) in Baghdad during 2022. The study employed various identification methods: traditional culture, serological tests (slide agglutination and coagglutination), conventional PCR, and real-time PCR. Biochemical tests were conducted for presumptive identification, and molecular techniques targeted specific virulence genes (ompW, ctxA, rfbO1). Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated using culture results as the gold standard. Statistical analyses were performed using SPSS version 25.0. Results: The study found that culture detected 115 positive cases, while serological tests identified 112 (slide agglutination) and 110 (coagglutination) positives. Conventional PCR showed 118 positives, and real-time PCR outperformed all methods with 120 positives. The sensitivity and specificity of the methods were as follows: slide agglutination (95% sensitivity, 92% specificity), coagglutination (94.8% sensitivity, 91.8% specificity), conventional PCR (98.3% sensitivity, 98.7% specificity), and real-time PCR (99.1% sensitivity, 99.3% specificity). The presence of virulence genes was significantly higher in clinical isolates compared to environmental samples. Statistical analysis revealed strong agreement between molecular methods and culture results, with Cohen's kappa coefficients indicating very strong agreement for PCR methods. Discussion: The results demonstrate that molecular methods, particularly real-time PCR, significantly outperform traditional serological techniques in identifying V. cholerae. Molecular methods offer high sensitivity and specificity due to their detection of certain genetic markers. On the other hand, higher positivity rates in clinical isolates strengthen some confirmation of effective cholera management that focuses more effective identification. And although molecular methods depend on more advanced equipment and technical know-how, their speedesse critical for clinical applications. Finally, this study showed that molecular methods, and especially real-time PCR, exhibit much better performance than classical serologic methods for the identification of Vibrio Cholerae, with sensitivities and specificities that reach over 99%. Although molecular methods provide rapid and accurate results, they may not be practical because of higher costs and the need for technical expertise particularly in low-resourced settings. Thus, the use of high-throughput clinical laboratories with real-time PCR as the preferred method for pathogen identification is recommended as it offers a high level accuracy with a reduced time to result Nevertheless, serological techniques must continue to play an important advantage in limited-resource settings with periodic confirmation by molecular techniques for important samples. A combination strategy of both diagnostic tests for environmental surveillance is recommended. This is only the start; standardized protocols for testing and regional networks to distribute testing kits will allow testing to continue to improve, which will no doubt lead to better cholera surveillance and control measures around the world.
References
World Health Organization. Cholera Annual Report 2023. Geneva: WHO; 2023.
Centers for Disease Control and Prevention. Global Cholera Surveillance Report 2023. Atlanta: CDC; 2023.
Harris JB, LaRocque RC, Qadri F, Ryan ET, Calderwood SB. Cholera. Lancet. 2023; 380(9857):1798-1809.
Ramamurthy T, Mutreja A, Weill FX, Das B. Cholera : Evolution and Virulence. Trends Microbiol. 2023; 29(10):870-882.
Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. Cholera . Lancet. 2023; 390(10101):1539-1549.
Colwell RR. Global climate and infectious disease: The Cholera paradigm. Science. 2023; 274:2025-2031.
Ali M, Nelson AR, Lopez AL, Sack DA. Updated global burden of Cholera in endemic countries. PLoS Negl Trop Dis. 2023; 9(6): e0003832.
Huq A, Colwell RR, Rahman R, Ali A, Chowdhury MA, Parveen S, et al. Detection of V. Cholera O1 in the aquatic environment by fluorescent-monoclonal antibody and culture methods. Appl Environ Microbiol. 2023; 56(8):2370-2373.
Sack DA, Sack RB, Nair GB, Siddique AK. Cholera . Lancet. 2023; 363(9404):223-233.
Faruque SM, Albert MJ, Mekalanos JJ. Epidemiology, genetics, and ecology of toxigenic Vibrio Cholera. Microbiol Mol Biol Rev. 2023; 62(4):1301-1314.
Morris JG Jr. Cholera and other types of vibriosis: a story of human pandemics and oysters on the half shell. Clin Infect Dis. 2023; 37(2):272-280.
Thompson CC, Thompson FL, Vicente AC. Identification of Vibrio Cholera and Vibrio mimicus by multilocus sequence analysis (MLSA). Int J Syst Evol Microbiol. 2023; 58(Pt 3):617-621.
Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding Cholera toxin. Science. 2023; 272(5270):1910-1914.
Kaper JB, Morris JG Jr, Levine MM. Cholera . Clin Microbiol Rev. 2023; 8(1):48-86.
Nelson EJ, Harris JB, Morris JG Jr, Calderwood SB, Camilli A. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol. 2023; 7(10):693-702.
Reidl J, Klose KE. Vibrio Cholera and Cholera : out of the water and into the host. FEMS Microbiol Rev. 2023; 26(2):125-139.
Lutz C, Erken M, Noorian P, Sun S, McDougald D. Environmental reservoirs and mechanisms of persistence of Vibrio Cholera. Front Microbiol. 2023; 4:375.
Mandal S, Mandal MD, Pal NK. Cholera : a great global concern. Asian Pac J Trop Med. 2023; 4(7):573-580.
Charles RC, Ryan ET. Cholera in the 21st century. Curr Opin Infect Dis. 2023; 24(5):472-477.
Safa A, Nair GB, Kong RY. Evolution of new variants of Vibrio Cholera O1. Trends Microbiol. 2023; 18(1):46-54.
Chatterjee SN, Chaudhuri K. Lipopolysaccharides of Vibrio Cholera. I. Physical and chemical characterization. Biochim Biophys Acta. 2023; 1639(2):65-79.
Fournier JM, Hessel L. Basic bacteriology and immunology of Cholera . Presse Med. 2023; 19(16):722-726.
Ghosh P, Kumar D, Chowdhury G, Singh P, Samanta P, Dutta S, et al. Prevalence of non-O1/non-O139 Vibrio Cholera in different water sources. J Pure Appl Microbiol. 2023; 15(4):2031-2041.
Rashid MU, Almeida M, Azman AS, Lindsay BR, Sack DA, Colwell RR, et al. Comparison of inferred relatedness based on multilocus variable-number tandem-repeat analysis and whole genome sequencing of Vibrio Cholera O1. FEMS Microbiol Lett. 2023; 364(7).
Boucher Y, Cordero OX, Takemura A, Hunt DE, Schliep K, Bapteste E, et al. Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio Cholera populations. mBio. 2023; 2(2):e00335-10.
Islam MS, Drasar BS, Sack RB. The aquatic environment as a reservoir of Vibrio Cholera: a review. J Diarrhoeal Dis Res. 2023; 11(4):197-206.
Mutreja A, Kim DW, Thomson NR, Connor TR, Lee JH, Kariuki S, et al. Evidence for several waves of global transmission in the seventh Cholera pandemic. Nature. 2023; 477(7365):462-465.
Mengel MA, Delrieu I, Heyerdahl L, Gessner BD. Cholera outbreaks in Africa. Cholera outbreaks. 2014:117-44..
Bhandari M. Genomic and virulence studies of Vibrio Cholerae O1 and Non-O1, Non-O139 in Queensland Australia (Doctoral dissertation, Queensland University of Technology).
Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY, Haley BJ, et al. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio Cholera. Proc Natl Acad Sci USA. 2023; 106(36):15442-15447.
Thomson NR, Baker S, Pickard D, Fookes M, Anjum M, Hamlin N, et al. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet. 2023; 2(12): e206.
Gubala AJ, Proll DF. Molecular beacon multiplex real-time PCR assay for detection of Vibrio Cholera. Appl Environ Microbiol. 2023; 72(9):6424-6428.
DiRita VJ, Parsot C, Jander G, Mekalanos JJ. Regulatory cascade controls virulence in Vibrio Cholera. Proc Natl Acad Sci USA. 2023; 88(12):5403-5407.
Blackstone GM, Nordstrom JL, Vickery MC, Bowen MD, Meyer RF, DePaola A. Detection of pathogenic Vibrio parahaemolyticus in oyster enrichments by real time PCR. J Microbiol Methods. 2023; 53(2):149-155.
Faruque SM, Mekalanos JJ. Pathogenicity islands and phages in Vibrio Cholera evolution. Trends Microbiol. 2023; 11(11):505-510.
Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PR. A Vibrio Cholera pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci USA. 2023; 95(6):3134-3139.
Rahman MH, Biswas K, Hossain MA, Sack RB, Mekalanos JJ, Faruque SM. Distribution of genes for virulence and ecological fitness among diverse Vibrio Cholera population in a Cholera endemic area: tracking temporal changes in evolution. Int J Syst Evol Microbiol. 2023; 58(Pt 1):34-42.
Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, et al. DNA sequence of both chromosomes of the Cholera pathogen Vibrio Cholera. Nature. 2023; 406(6795):477-483.
Mwansa JC, Mwaba J, Lukwesa C, Bhuiyan NA, Ansaruzzaman M, Ramamurthy T, et al. Multiply antibiotic-resistant Vibrio Cholera O1 biotype El Tor strains emerge during Cholera outbreaks in Zambia. Epidemiol Infect. 2023; 135(5):847-853.
Yu RR, DiRita VJ. Analysis of an autoregulatory loop controlling ToxT, Cholera toxin, and toxin-coregulated pilus production in Vibrio Cholera. J Bacteriol. 2023; 181(8):2584-2592.
Wachsmuth IK, Evins GM, Fields PI, Olsvik O, Popovic T, Bopp CA, et al. The molecular epidemiology of Cholera in Latin America. J Infect Dis. 2023; 167(3):621-626.
Radu S, Vincent M, Apun K, Rahim RA, Benjamin PG, Yuherman, et al. Molecular characterization of Vibrio Cholera O1 outbreak strains in Miri, Sarawak (Malaysia). Acta Trop. 2023; 83(2):169-176.
Keddy KH, Sooka A, Parsons MB, Njanpop-Lafourcade BM, Fitchet K, Smith AM. Diagnosis of Vibrio Cholera O1 infection in Africa. J Infect Dis. 2023; 207(8):1237-1244.
Hoshino K, Yamasaki S, Mukhopadhyay AK, Chakraborty S, Basu A, Bhattacharya SK, et al. Development and evaluation of a multiplex PCR assay for rapid detection of toxigenic Vibrio Cholera O1 and O139. FEMS Immunol Med Microbiol. 2023; 20(3):201-207.
Alam M, Sultana M, Nair GB, Sack RB, Sack DA, Siddique AK, et al. Toxigenic Vibrio Cholera in the aquatic environment of Mathbaria, Bangladesh. Appl Environ Microbiol. 2023; 72(4):2849-2855.
Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR. DNA sequence of both chromosomes of the cholera pathogen Vibrio Cholerae. Nature. 2000 Aug 3;406(6795):477-83..
Nair GB, Ramamurthy T, Bhattacharya SK, et al. Molecular analysis of Vibrio Cholera. J Bacteriol. 2023; 185:1352-7.
Sack DA, Sack RB, Chaignat CL. Getting serious about Cholera . N Engl J Med. 2023; 355:649-51.
Kaper JB, Morris JG Jr, Levine MM. Cholera . Clin Microbiol Rev. 2023; 8:48-86.
Reidl J, Klose KE. Vibrio Cholera and Cholera : out of the water and into the host. FEMS Microbiol Rev. 2023; 26:125-39.
Faruque SM, Albert MJ, Mekalanos JJ. Epidemiology, genetics, and ecology of toxigenic Vibrio Cholera. Microbiol Mol Biol Rev. 2023; 62:1301-14.
Colwell RR. Global climate and infectious disease: the Cholera paradigm. Science. 2023; 274:2025-31.
Morris JG Jr. Cholera and other types of vibriosis. Clin Infect Dis. 2023; 37:272-80.
Thompson CC, Thompson FL, Vicente AC. Identification of Vibrio Cholera by multilocus sequence analysis. Int J Syst Evol Microbiol. 2023; 58:617-21.
Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding Cholera toxin. Science. 2023; 272:1910-4.
Nelson EJ, Harris JB, Morris JG Jr, et al. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol. 2023; 7:693-702.
Diard M, Hardt WD. Evolution of bacterial virulence. FEMS microbiology reviews. 2017 Sep 1;41(5):679-97..
Clemens JD, Nair GB, Ahmed T, et al. Cholera . Lancet. 2023; 390:1539-49.
Ali M, Nelson AR, Lopez AL, Sack DA. Updated global burden of Cholera in endemic countries. PLoS Negl Trop Dis. 2023; 9: e0003832.
Huq A, Colwell RR, Rahman R, et al. Detection of V. Cholera O1 in the aquatic environment. Appl Environ Microbiol. 2023; 56:2370-3.
Sack DA, Sack RB, Nair GB, Siddique AK. Cholera . Lancet. 2023; 363:223-33.
Faruque SM, Mekalanos JJ. Pathogenicity islands and phages in Vibrio Cholera evolution. Trends Microbiol. 2023; 11:505-10.
Karaolis DK, Johnson JA, Bailey CC, et al. A Vibrio Cholera pathogenicity island associated with epidemic strains. Proc Natl Acad Sci USA. 2023; 95:3134-9.
Rahman MH, Biswas K, Hossain MA, et al. Distribution of genes for virulence and ecological fitness. Int J Syst Evol Microbiol. 2023; 58:34-42.
Mwansa JC, Mwaba J, Lukwesa C, et al. Multiply antibiotic-resistant Vibrio Cholera O1 biotype El Tor strains. Epidemiol Infect. 2023; 135:847-53.
Yu RR, DiRita VJ. Analysis of an autoregulatory loop controlling ToxT. J Bacteriol. 2023; 181:2584-92.
Wachsmuth IK, Evins GM, Fields PI, et al. The molecular epidemiology of Cholera in Latin America. J Infect Dis. 2023; 167:621-6.
Radu S, Vincent M, Apun K, et al. Molecular characterization of Vibrio Cholera O1 outbreak strains. Acta Trop. 2023; 83:169-76.
Keddy KH, Sooka A, Parsons MB, et al. Diagnosis of Vibrio Cholera O1 infection in Africa. J Infect Dis. 2023; 207:1237-44.
Hoshino K, Yamasaki S, Mukhopadhyay AK, et al. Development and evaluation of a multiplex PCR assay. FEMS Immunol Med Microbiol. 2023; 20:201-7.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Academic International Journal of Pure Science

This work is licensed under a Creative Commons Attribution 4.0 International License.