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Abstract 

This work delves into the intricate realm of induced representations, offering an exhaustive 

examination of three pivotal theorems in the domain of induced representations pertaining 

to locally compact groups. These three theorems, specifically, are the theorem on induction 

in stages, the imprimitivity theorem and the intertwining number theorem. These theorems 

are central to understanding how representations are constructed, related, and interwoven 

within the framework of group theory. 
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1. Introduction 

Let 𝐺 be a locally compact group. Let  be a left Haar measure on 𝐺. The following 

definitions serve as a bedrock for the sequel [1–3] 

Definition 1.1.Let 
x be a Borel measure on 𝐺.Then for each 𝑥, there exists a number 

0)(  x such that .)(  xx = The function ∆: 𝐺 → ℝ is called the modular function of 𝐺. 

If ∆= 1, then 𝐺is said to be unimodular. 

Remark 1.2. From the definition above (1.1), we deduce the following: 

(a) ∆ is continuous, and 

(b) ∆(𝑥, 𝑦) = ∆(𝑥)∆(𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝐺. 

 

Definition 1.3. Let 𝑓 be a continuous function on a topological spaceΧ. The support of 

𝑓written 𝑠𝑢𝑝𝑝(𝑓) is the closure of {𝑥 ∈ Χ: 𝑓(𝑥) ≠ 0}. 

𝐶𝑜(Χ) denotes the set of continuous functions on Χ with compact support.  

Now, let 𝐻 be a closed subgroup of 𝐺. 

Let right invariant measure da on 𝐺 and 𝑑𝜉 on 𝐻with corresponding modular functions ∆ 

and 𝛿 respectively. 

In particular, for any integrable function𝑓on 𝐺, 


−=

GG
daafbdabaf )()()( 1  

 = −−

G G
daafdaaaf )()()( 11 , and similarly for .  

In addition, let 1)()()( −=  for H . 
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Let 𝜋: 𝐺 → 𝑀 be the canonical projection onto the space of left cosets 
G

HM = and let 

𝜏 be the averaging map =  dxx )())()(( )( Gx for )(0 GC . 

Suppose 𝐿 is a continuous unitary representation of 𝐻 on a Hilbert space 𝒱 and let F be 

the set of functions 

 

𝑓: 𝐺 → 𝒱 satisfying: 

(a) )()()()( 2

1

afLf a  =  that is, 

)()()()()( 2

1

2

1

afLf a 
−

= (𝛿 ∈ 𝐻, 𝑎 ∈ 𝐺) 

(b) ‖𝑓(𝑎)‖2 is locally integrable, that is, 

∫‖𝑓(𝑎)‖𝒱
2   𝑑𝑎 < ∞ 𝑤ℎ𝑒𝑟𝑒 ‖∙‖𝒱 is a norm in 𝒱 

(c) 𝑓 is strongly measurable, that is, ‖𝑓(𝑎)‖is measurable and < 𝑓(𝑎), 𝜈 > (𝜈 ∈ 𝒱) 

and for every compact subset 𝒱𝑜 𝑜𝑓 𝒱such that 𝑓(𝑎)𝜖𝒱0
̅̅ ̅(almost everywhere in 𝐾). 

 

Next, we show that F defines an inner product space, with the inner product: 

 =
G

daafafff )(),(, 2121 . 

The proof is given in five points: 

(i)  =
G

daafafff )(),(, 2121 . 

              =
G

daaf 0)(
2

1 . 

 

      (ii) Here we show that < 𝑓1, 𝑓1 > = 0 if and only if 𝑓1 = 0. 

Let< 𝑓1, 𝑓1 > = 0. Then  =
G

daf 0
2

1 .That is,‖𝑓1(𝑎)‖ = 0, and so,𝑓1(𝑎) = 0, for all 𝑎 ∈

𝐺. 

Therefore 𝑓1 = 0. 

Conversely, if 𝑓1 = 0 ,then 𝑓1(𝑎) = 0 for all 𝑎 ∈ 𝐺, that is, 0)(
2

1 =G daaf and.  

Thus,< 𝑓1, 𝑓1 > = 0. 

     (iii) Let 𝑓1, 𝑓2 𝑎𝑛𝑑 𝑓3 be functions in 𝐹∗ 

 +=+
G

daafafffff )(),)((. 321321  

                    
 += daafafaf )(),()( 321

. 

Since 𝒱 is a Hilbert space,    

< 𝑓1(𝑎) + 𝑓2(𝑎), 𝑓3(𝑎) > =< 𝑓1(𝑎), 𝑓3(𝑎) > +< 𝑓2(𝑎), 𝑓3(𝑎) >. 

Therefore,   

                     +=+
G G

daafafdaafaffff )(),()(),(, 3231321  

And so,         < 𝑓1 + 𝑓2, 𝑓3 > =< 𝑓1, 𝑓3 > +< 𝑓2, 𝑓3 > 

       (iv) Let 𝜆 ∈ 𝕂 and 𝑓1, 𝑓2 ∈ 𝐹∗ 

 =
G

daafafff )(),)((, 2121   

                 =
G

daafaf )(),( 21  
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                 =
G

daafaf )(),( 21 ( since 𝒱 is a Hilbert space) 

                 =
G

daafaf )(),( 21  

That is,< 𝜆𝑓1, 𝑓2 > = 𝜆 < 𝑓1, 𝑓2 >. 

(v) Let 𝑓1, 𝑓2 ∈ 𝐹∗ 

 =
G

daafafff )(),(, 2121  

              
daafaf

G = )(),( 12   

              
daafaf

G = )(),( 12   

That is,< 𝑓1, 𝑓2 > =< 𝑓2, 𝑓1 > . 

Hence 𝐹∗ defines an inner product space, say ℋ ⊂ 𝐹∗ 

Lemma 1.4. For 𝑓 ∈ 𝐹∗ and 𝜑 ∈ 𝐶𝑜(𝐺) , Gff daaaf )()(:
2

1
   is a Radon measure 

on 𝑀,that is, a continuous linear functional on 𝐶𝑜(𝑀). Then  

 =G M
pdpdaaaf

f
)())(()()(

2

  

Now, for 𝑓 ∈ 𝐹∗, Let ‖𝑓‖2 = 𝜇𝑓,𝑓(𝑀) and let 𝐻𝐿 = {𝑓 ∈ 𝐹∗ ∶ ‖𝑓‖ < ∞}/{𝑓 ∈ 𝐹∗ ∶
‖𝑓‖ = 0}. 

Then (𝑈𝐿(𝑔)𝑓)(𝑎) = 𝑓(𝑎 ∙ 𝑔)    (𝑎, 𝑔 ∈ 𝐺) defines a continuous unitary representation 𝑈𝐿 

in 𝐻𝐿 𝑜𝑓 𝐺. 𝑈𝐿is called the induced representation of 𝐿 from 𝐻 to 𝐺 [4– 7]. In this section, 

we discuss the theorem on induce in stages. However, we first introduce a function called 

𝜖 − 𝑚𝑎𝑝 and elaborate on its properties. 

2. Induction in stages 

In this section, we discuss the theorem on inducing in stages. However, we first introduce 

a function called 𝜖 − 𝑚𝑎𝑝 and elaborate on its properties. 

Let 𝑓 ∈ 𝐶𝑜(𝐺)and 𝑣 𝜖 𝒱.  

We form  

( ) ( ) ( )  vdLxfxvf
H

1
2

1

2

1

)(),(
−−

 =  

𝜖(𝑓, 𝑣) has its support contained in 𝐻𝐾 if the support of 𝑓 is 𝐾.  

Let 𝐹𝑜 be the subset of 𝐹∗ consisting of functions that are continuous with compact support 

modulo 𝐻. 
Thus𝐹𝑜 ⊆ {𝑓 ∈ 𝐹∗: ‖𝑓‖ < ∞}. Then 𝜖(𝑓, 𝑣) ∈ 𝐹𝑜. 

Definition 2.1.We say that a subset 𝑆 of a topological vector space 𝒱 is total if the linear 

manifold spanned by 𝑆 is dense in 𝒱. 

 

In the following, we give two key properties of the 𝜖 − 𝑚𝑎𝑝 [8]: 

Lemma 2.2. (a) If 𝐾 is the support of 𝑓, then ‖𝜖(𝑓, 𝑣)‖ ≤ 𝜆𝐾‖𝑓‖𝐺‖𝑣‖ 

(b) If 𝔇 is total in a Hilbert space 𝒱, then 𝜖(𝐶𝑜(𝐺) × 𝔇) is total in ℋ. 

We end this section by giving a proof of the theorem through induction in stages following 

Blattner’s version [8–12]. 

Theorem 2.3. Let 𝐻1 𝑎𝑛𝑑 𝐻2 be closed subgroups of 𝐺 with 𝐻1 ⊆ 𝐻2. Let 𝐿 be the unitary 

representation of 𝐻1 on a Hilbert space 𝒱 and denote the inductions of 𝐿 to 𝐻1and 𝐺 by 𝑀 

and 𝑈 respectively. Then 𝑈 is unitary equivalent to 𝑈𝑀. 
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In some other notations, we write: 

𝑖𝑛𝑑 (𝐺, 𝐻1, 𝐿) ∼ 𝑖𝑛𝑑(𝐺, 𝐻2 , 𝑖𝑛𝑑 (𝐻2, 𝐻1, 𝐿)) 

or 

                                               𝑖𝑛𝑑
𝐺
𝐻1

~𝑖𝑛𝑑
𝐺

𝐻2
𝑖𝑛𝑑

𝐻2

𝐻1
. 

Proof. Suppose 𝛿1, 𝛿2 𝑎𝑛𝑑 ∆ are the modular functions for 𝐻1, 𝐻2 and 𝐺 respectively. Let 

𝐹(1), 𝐹(2) and 𝐹 be the spaces for the inductions from𝐻1 𝑡𝑜 𝐻2 , 𝐻2 to 𝐺 and 𝐻1 to 𝐺 

respectively.  

Let 𝑓 ∈ 𝐹𝑜 with support in the compact set 𝐻1𝐾. 

For 𝜂 ∈ 𝐻2, 𝑥 𝜖 𝐺, let 𝑓(𝜂, 𝑥) = 𝛿2(𝜂)−
1

2Δ(𝜂)
1

2𝑓(𝜂)                   (2.1) 

Let 𝑥 be fixed.  

Then                      𝑓(𝜉𝜂, 𝑥) = 𝛿2(𝜉𝜂)−
1

2Δ(𝜉𝜂)
1

2𝑓(𝜉𝜂𝑥) 

                                                 = 𝛿2(𝜉)−
1

2𝛿2(𝜂)−
1

2Δ(𝜉)
1

2Δ(𝜂)
1

2Δ(𝜉)−
1

2𝛿1(𝜉)
1

2𝐿(𝜉)𝑓(𝜂𝑥)       

 =  𝛿2(𝜉)−
1
2𝛿1(𝜉)

1
2𝛿2(𝜂)−

1
2Δ(𝜂)

1
2𝐿(𝜉)𝑓(𝜂𝑥) 

                                                  = 𝛿2(𝜉)−
1

2𝛿1(𝜉)
1

2L(𝜉)𝑓(𝜂, 𝑥)   (from (2.1)) 
(𝜉 ∈ 𝐻1, 𝜂 ∈ 𝐻2) 

Furthermore, 𝑓(∙, 𝑥) is a continuous with support in ( )2

1

1 KKxH − . So 𝑓(∙, 𝑥) belongs to
)1(

oF , that we denote by𝑓(𝑥).  

Now, let 𝜂, 𝜉 ∈ 𝐻2, 𝑥 ∈ 𝐺, 

𝑓(𝜂, 𝜁𝑥) = 𝛿2(𝜂)−
1

2Δ(𝜂)
1

2𝑓(𝜂𝜁𝑥)    (from (2.1)) 

                 = 𝛿2(𝜂)−
1

2Δ(𝜂)
1

2Δ(𝜂𝜁)−
1

2𝛿2(𝜂𝜁)
1

2𝐿(𝜂𝜁)𝑓(𝑥)    (from the definition of 𝐹∗) 

                 = 𝛿2(𝜂)−
1

2Δ(𝜂)
1

2Δ(𝜂)−
1

2Δ(𝜁)−
1

2𝛿2(𝜂)
1

2𝛿2(𝜁)
1

2𝐿(𝜂𝜁)𝑓(𝑥) (from the definition of a 

modular function ) 

= 𝛿2(𝜁)
1
2Δ(𝜁)−

1
2𝐿(𝜂𝜁)𝑓(𝑥) 

                      = 𝛿2(𝜁)
1
2Δ(𝜁)−

1
2Δ(𝜂𝜁)

1
2𝛿2(𝜂𝜁)−

1
2𝑓(𝜂𝜁𝑥) 

                                                               = 𝛿2(𝜁)
1

2Δ(𝜁)−
1

2𝑓(𝜂𝜁𝑥)    (from (2.1)) 

Hence, 

𝑓(𝜁𝑥) = 𝛿2(𝜁)
1

2Δ(𝜁)−
1

2𝑀𝜁𝑓(𝑥) . 

The support of 𝑓(⋅) is in KH 2 . 

To show continuity, suppose 𝑁 is a compact neighborhood of 𝑒 in 𝐺 and choose ℎ ∈ 𝐶𝑜(𝐺) 

so that  =
1

1)(
H

dxh  on 𝐻1𝐾𝑁 . 

Then 

1)(
1

=H dxh   for 𝜂 ∈ 𝐻1(𝐾𝑁𝑥−1 ∩ 𝐻2) 

Thus,  −=−
2

22

),(ˆ),(ˆ)()(ˆ)(ˆ
H

dyfxfxhyfxf   

                                  
 −=

−−

2

2

2

1

2

1

2
2

1

2

1

2 )()()()()()()(
H

dyfxfxh   
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 −













=

−

2

2

2

2

1

2

1

2 )()()()()(
H

dyfxfxh   

                                  
 −= −

2

21

2 )()()()()(
H

dyfxfxh   

whenever 𝑦−1𝑥 𝜖 𝑁. 

Clearly 𝑓 is here uniformly continuous on compact sets, and so it is continuous. Then 𝑓(⋅) 

belongs to
)2(

oF , and will be abbreviated as𝑓. 

Now,  dxfxhxf
H

21

2

2

)()()()()(ˆ
2

= −

 . 

Let )(GCk o  such that  =
2

1)(
H

dxk  on KH 2 .  

Then due to the Fubini’s theorem and the Haar measure’s preservation under group action, 

we have: 

= G
dxxfxkf

22

)(ˆ)(ˆ  

       
  = −

G H
dxdxfxhxk 

2
1

2
2

)()()()()(  

       
 

−=
2

2
1

2 )()()()()(
H G

dxdxfxhxk   

       
 

−−=
2

2
1

2

1 )()()()(
H G

dxdxfxhxk   

       
  



=

G H
dxdxkxfxh

2

)()()(
2

  

       = G
dxxfxh

2
)()( (since  =

2

1)(
H

dxk  ) 

       

2
f=             (by the choice of ℎ and 𝑘). 

 Hence 𝑓 → 𝑓 is an isometry of 
oF  onto

)2(

oF .  

Next we prove that the image of
oF is dense in

)2(

oF . 

Let )( 2HCg o , )(GCh o , 𝜐 𝜖 𝒱and take 

)()()()()()( 12

1

2

1

2
2

GCdxhgxk o
H

= −
−

  . 

Then 

)()()())(,( 2

1

2

1

1
1

xkxvk
H

 = 
−

𝐿(𝜉)−1𝑣𝑑𝜉 

                
 

−
−−

=
1 2

)()()()()()( 12

1

2

1

2
2

1

2

1

1
H H

xhg  L(𝜉)−1𝑣𝑑𝜁𝑑𝜉 

                
 

−
−−

=
1 2

)()()()()( 12

1

2

1

2
2

1

1
H H

xhg  L(𝜉)−1𝑣𝑑𝜁𝑑𝜉 

 so that, 

   𝜖(𝑘, 𝑣)∧(𝜂, 𝑥)  
−

−−

=
1 2

)()()()()( 12

1

2

1

2
2

1

1
H H

xhg  L(𝜉)−1𝑣𝑑𝜁𝑑𝜉 



 Aca. Intl. J. P. Sci. 2023;01(2):20-30  25 
 

                        
 

−
−

−
−

=
1 2

)()()()()( 12

1

2

1

1

2
2

1

1
H H

xhg  L(𝜉)−1𝑣𝑑𝜁𝑑𝜉 

                        
  








= −−

−−

2 1

112

1

2
2

1

1
2

1

2

1

2 )()()()()()()(
H H

dvdLgxh   

Take 𝜖1 𝑎𝑛𝑑 𝜖2 as the 𝜖 − 𝑚𝑎𝑝𝑠 for the inductions from 𝐻1 𝑡𝑜 𝐻2 and 𝐻2 𝑡𝑜 𝐺 

respectively. 

 Then we have 𝜖(𝑘, 𝑣)∧ = 𝜖2(ℎ, 𝜖1(𝑔, 𝑣)). 

By Lemma 2.2, the set 𝜖2(𝐶𝑜(𝐺)) × 𝜖1(𝐶𝑜(𝐻2) × 𝑉) is total in 𝐹(2). This shows that the 

image of 𝐹𝑜 in 
)2(

oF is dense. Therefore, the map 𝑓 → 𝑓 can be extended to a unitary map 

of 𝐹 onto 𝐹(2). This proves the desired equivalence. 

∎ 

3. The intertwining number theorem 

In this section, we first state some pre-requisite facts needed for a standard proof of the 

intertwining number theorem. 

Definition 3.1. A one-parameter subgroup of a Lie group 𝐺 is an analytic homomorphism, 

say 𝜃from ℝ 𝑡𝑜 𝐺. 

Now, let 𝐺 be a Lie group and 𝑉 a unitary representation of 𝐺 on the Hilbert space 𝒦.Let 

gX  , the left-invariant Lie algebra of 𝐺and let )(x  be the one-parameter subgroup of 𝐺 

such that 

0))(())(( == tt tyxfDyXf for all )(GCf o

 . 

𝑑𝑉(𝑥) denotes the skew-adjoint infinitesimal operator generating the one-parameter 

unitary group )(xV in 𝒦. 

Let 𝒦∞ be the largest submanifold of 𝒦 contained in ∩ [𝑑𝑜𝑚(𝑑𝑉(𝑥)): 𝑋 ∈ 𝑔] and it is 

invariant under 𝑑𝑉(𝑔). 

 Since )()( 1 XaddVVVXdV
yyy −= ,𝑋 ∈ 𝑔, 𝑦 ∈ 𝐺, 𝒦∞is V-Invariant. 

 Denote the restriction of 𝑑𝑉 to 𝒦∞ by V . 

The following two lemmas are extracted from the work of Blattner [8]: 

Lemma 3.2. Suppose 
1V and 

2V are unitary representations of 𝐺 on the Hilbert spaces 

𝒦1and 𝒦2 respectively. Let 𝐴 ∈ ℜ(𝑉1, 𝑉2), the set of operators intertwining 
1V and 

2V . 

Then 𝐴𝒦∞
1 ⊆ 𝒦∞

2 .Furthermore, AXVXVA )()( 21  for 𝑋 ∈ ℒ where ℒ is the 

enveloping algebra of the complexification of 𝑔. 

Lemma 3.3. Suppose )(GCf o

 ,𝑣 𝜖 𝒱. Then 𝜖(𝑓, 𝑣)𝜖ℋ∞. Furthermore, 

𝜕𝑈𝐿(𝑋)𝜖(𝑓, 𝑣) = 𝜖(𝑋𝑓, 𝑣) for each 𝑋 ∈ ℒ. 

Definition 3.4.  

       (a) An elliptic element is an element which is regarded as a left-invariant (analytic) 

linear differential operator. 

(𝑏) ℋ∞ denotes the domain of all operators of the differential representation 𝜕𝑈𝐿 of 

the enveloping algebra ℒ of the Lie algebra g of 𝐺. 

  



 Aca. Intl. J. P. Sci. 2023;01(2):20-30  26 
 

Theorem 3.5. 

Let𝒱 be infinite-dimensional. Thenℋ∞ ⊆ 𝐶(𝐺; 𝒱). Furthermore, suppose that 
oX is an 

elliptic element of ℒ of order 
2

n
m  where

H
Gn dim= . Then for all compact 

subsets𝐾 of 𝐺, there exists a constant Kc such that ( )ggXUcg o

L

KK
+ )(  for all𝑔 ∈

ℋ∞. 

Now, consider two closed subgroups 𝐻1 𝑎𝑛𝑑 𝐻2 of a Lie group 𝐺 with modular functions 

1  and 2 respectively. Let )1(L be a unitary representation of 
iH on the Hilbert space𝒱𝑖, 𝑖 =

1,2.  𝑈𝐿(𝑖)
 operates on ℋ(𝑖).  ℒ(𝒱1, 𝒱2) is the space of all bounded linear operators of 

𝒱1 𝑖𝑛𝑡𝑜 𝒱2 endowed with the bounded convergence topology. 

We assume 𝑑𝑖𝑚𝒱2 < ∞. 

For every 𝐴 ∈ ℜ(𝑈𝐿(1)
, 𝑈𝐿(2)

), we define a linear map Ar from )(GCo


to the set of linear 

maps of 𝒱1 𝑖𝑛𝑡𝑜 𝒱2 as follows: for every )(GCf o

 and 𝑣 ∈ 𝒱1, 𝑠𝑒𝑡 𝑟𝐴(𝑓)𝑣 =

(𝐴𝜖(𝑓, 𝑣))(𝑒). 

 For (𝜉1, 𝜉2) ∈ 𝐻1 × 𝐻2 and any function 𝑓on 𝐺, we set (𝜌𝜖1, 𝜖2𝑓) = 𝑓(𝜉1
−1𝑥𝜉2), 𝑥 ∈ 𝐺. 

Now, we can state the main result of this section: 

Theorem 3.6.(Intertwining Number Theorem) [9,13,14] 

Let 𝑋𝑜 be an elliptic element of ℒ of order greater than 








2

dim
2

1
H

G .For )(GCf o

 ,set

GGoX
ffXf

o

+= . 

For each relatively compact open set 𝑂 𝑜𝑓 𝐺, endow )(OCo


with the topology induced 

by‖∙‖𝑋𝑜
; endow )(oCo


with the corresponding inductive limit topology. Suppose ℳ is the 

subspace of maps 

z ∈ ℒ(𝐶𝑜
∞(𝐺); ℒ(𝒱1; 𝒱2)) such that ( )fz

21 , =

𝛿1(𝜉1)
1

2𝛿2(𝜉2)
1

2Δ(𝜉1𝜉2
−1)

1

2𝐿(2)(𝜉2)z(𝑓)𝐿(1)(𝜉1)−1 for all(𝜉1, 𝜉2) ∈ 𝐻1 × 𝐻2 and all 𝑓 ∈
𝐶𝑜

∞(𝐺).  

Then the map 𝐴 → 𝑟𝐴 is a faithful linear map of ℜ (𝑈𝐿(1)
, 𝑈𝐿(2)

)into ℳ. 

Proof. Let 𝑣 ∈ 𝒱1, 𝐴 ∈ ℜ (𝑈𝐿(1)
, 𝑈𝐿(2)

), )(OCf o

 and 𝑂 a relatively compact open 

subset of 𝐺. 

By Theorem 3.5.,  

‖𝑟𝐴(𝑓)𝑣‖ ≤ 𝐶{𝑒} (‖𝜕𝑈𝐿(2)
(𝑋𝑜)𝐴 ∈ (𝑓, 𝑣)‖ + ‖𝐴 ∈ (𝑓, 𝑣)‖)                                   (3.1) 

By Lemma 3.2., 𝜕𝑈𝐿(2)
(𝑋𝑜) 𝐴 ∈ (𝑓, 𝑣) = 𝐴𝜕𝑈𝐿(1)

(𝑋𝑜) ∈ (𝑓, 𝑣).  

Moreover by Lemma 3.3, we obtain 𝜕𝑈𝐿(1)
(𝑋𝑜) ∈ (𝑓, 𝑣) =∈ (𝑋𝑜𝑓, 𝑣),and so, 

𝜕𝑈𝐿(2)
(𝑋𝑜) ∈ (𝑓, 𝑣) = 𝐴 ∈ (𝑋𝑜𝑓, 𝑣).  

 

Thus, ‖𝑟𝐴(𝑓)𝑣‖ ≤ 𝐶{𝑒}(‖𝐴 ∈ (𝑋𝑜𝑓, 𝑣)‖ + ‖𝐴 ∈ (𝑓, 𝑣)‖) 

= 𝐶{𝑒}(‖𝐴‖‖∈ (𝑋𝑜𝑓, 𝑣)‖ + ‖𝐴‖‖∈ (𝑓, 𝑣)‖) 

= 𝐶{𝑒}‖𝐴‖(‖∈ (𝑋𝑜𝑓, 𝑣)‖ + ‖∈ (𝑓, 𝑣)‖) 
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By Lemma 2.2,‖∈ (𝑋𝑜𝑓, 𝑣)‖ ≤ 𝜆𝐾1
‖𝑋𝑜𝑓‖𝐺‖𝑣‖ and 

‖∈ (𝑓, 𝑣)‖ ≤ 𝜆𝐾2
‖𝑓‖𝐺‖𝑣‖.  

Therefore (3.1) becomes 

‖𝑟𝐴(𝑓)𝑣‖ ≤ 𝐶{𝑒}‖𝐴‖(𝜆𝐾1
‖𝑋𝑜𝑓‖𝐺‖𝑣‖ + 𝜆𝐾2

‖𝑓‖𝐺‖𝑣‖) 

                                                   ≤ 𝐶{𝑒}‖𝐴‖𝜆𝐾′‖𝑣‖(‖𝑋𝑜𝑓‖𝐺 + ‖𝑓‖𝐺)  

where 𝜆𝐾′ = max{𝜆𝐾1
, 𝜆𝐾2

}. 

Moreover, by hypothesis, ‖𝑋𝑜𝑓‖𝐺 + ‖𝑓‖𝐺 = ‖𝑓‖𝑋𝑜
.  

Hence, ‖𝑟𝐴(𝑓)𝑣‖ ≤ 𝐶{𝑒}‖𝐴‖𝜆𝐾′‖𝑣‖‖𝑓‖𝑋𝑜
and so,𝑟𝐴 ∈ 𝐿(𝐶𝑜

∞(𝐺); 𝐿(𝒱1, 𝒱2)). 

Now, let 0=Ar . Let )(GCf o

 and 𝑣 ∈ 𝒱1.  

For every Gx , we have: 

(𝐴 ∈ (𝑓, 𝑣))(𝑥) = (𝑈𝑥
𝐿(2)

 𝐴 ∈ (𝑓, 𝑣)) (𝑒) but 𝑈𝑥
𝐿(2)

𝐴 = 𝐴𝑈𝑥
𝐿(1)

(𝑠𝑖𝑛𝑐𝑒 𝐴 ∈

ℛ(𝑈𝐿(1)
, 𝑈𝐿(2)

))so (𝐴 ∈ (𝑓, 𝑣))(𝑥) = (𝐴𝑈𝑥
𝐿(1)

∈ (𝑓, 𝑣)) (𝑒) 

= (𝐴 ∈ (𝑅𝑥𝑓, 𝑣))(𝑒) 

However, (𝐴 ∈ (𝑓, 𝑣))(𝑒) = 𝑟𝐴(𝑓)𝑣 for all 𝑓 ∈ 𝐶𝑜
∞(𝐺)and 𝑣 ∈ 𝒱1.  

Thus, (𝐴 ∈ (𝑓, 𝑣))(𝑥) = 𝑟𝐴(𝑅𝑥𝑓)(𝑣)       (3.2) 

 Since 0=Ar ,(𝐴 ∈ (𝑓, 𝑣))(𝑒) = 0.  

Then by Lemma 2.2, 𝐴 = 0on ∈ (𝐶𝑜
∞(𝐺) × 𝒱1), a total subset of ℋ(1) and so Ar is one-to-

one, that is faithful(𝑠𝑖𝑛𝑐𝑒 ker (𝑟𝐴) = {0}). 

Next, we prove that 𝑟𝐴 ∈ ℳ.  

Let )(GCf o

 ,  𝑣 ∈ 𝒱1and (𝜉1, 𝜉2) ∈ 𝐻1 × 𝐻2.  

Then ( ) ( )vfRrvfr eAA ,, 2121
)(  =  

                              
( ) )(),( 2,1

 vfA e=      (from (3.2)) 

                             
( ) ( ) ( ) ( )frL eA ,2

)2(
2

1

2
2

1

22 1
−

= by property (a) for functions of F  

Additionally,  

    
( ) ( ) ( ) ( ) ( )

−−−
=

1
1

1)1(1

1
2

1

2

1

1, )(,
H

e vdLxfxvf   

                          
( ) ( ) ( )

−−−
=

1

)()( 11

1

1

1)1(
2

1

1
2

1

11
H

dvLxf   

                          ( ) ( ) ( ) )()(, 1

1

)1(
2

1

1
2

1

11 xvLf −=   

Then 𝑟𝐴 ∈ ℳ. 

          ∎ 

Remarks 3.7. (1) If 𝑉1 𝑎𝑛𝑑 𝑉2 are representations of a Lie group 𝐺, then 𝑑𝑖𝑚ℛ(𝑉1, 𝑉2) is 

called the intertwining number of 𝑉1 𝑎𝑛𝑑 𝑉2 and is denoted by 𝐼(𝑉1, 𝑉2). 

(2) 𝐼 (𝑈𝐿(1)
, 𝑈𝐿(2)

) ≤ dim ℳ. 

 

4. Imprimitivity  

In this section, we will delve into the details of the imprimitivity theorem following the 

version of Bent Orsted [15]. This method is different from the classical proofs found in 
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some literatures [10,16–21]. We equally note that if we let(𝑃𝐿(Ψ)𝑓)(𝑎) =
Ψ(𝜋(𝑎))𝑓(𝑎)(𝑓 ∈ 𝐻𝐿 , Ψ ∈ 𝐶𝑜(𝑀)), then the pair (𝑈𝐿 , 𝑃𝐿) is called an induced system of 

imprimitivity. 

 

Theorem 4.1.(Imprimitivity Theorem) 

 Let U be a continuous unitary representation of 𝐺 𝑖𝑛 𝒱. Let 𝑃: 𝐶𝑜(𝑀) → ℒ(𝒱) be a 

homomorphism with𝑃(𝐶𝑜(𝑀))𝒱 dense in 𝒱  and 

𝑈(𝑔)𝑃(Ψ)𝑈(𝑔)−1 = 𝑃(𝑅(𝑔)Ψ)(𝑔 ∈ 𝐺, Ψ ∈ 𝐶𝑜(𝑀)) 

where (𝑅(𝑔)Ψ)(𝜋(𝑥)) = Ψ(𝜋(𝑥𝑔)). 

Then there is a unique continuous unitary representation 𝐿(up to unitary equivalence) of a 

closed subgroup 𝐻 𝑜𝑓 𝐺 in a Hilbert space 𝒱1 such that (𝑈, 𝑃)~(𝑈𝐿 , 𝑃𝐿) that is there exists 

a unitary operator 𝑊: 𝒱 → 𝒱𝐿 such that 

𝑊𝑈(𝑔) = 𝑈𝐿(𝑔)𝑊(𝑔 ∈ 𝐺) 

         𝑊𝑃(Ψ) = 𝑃𝐿(Ψ)𝑊(Ψ ∈ 𝐶𝑜(𝑀)) 

Proof. Considering that the kernel of 𝑃 is invariant under translations, we grasp that  

 ‖𝑃(Ψ)‖ = ‖Ψ‖∞, the supremum norm of Ψ. 

Next, let us examine the Garding domain 

𝒟 = 𝑠𝑝𝑎𝑛{𝑈(φ)𝑥|𝑥 ∈ 𝒱, φ ∈ 𝐶𝑜(𝐺)} 

where 
−=

G
daaUaU )()()( 1  

and the Radon measure  yxP ,)(  for 𝑥, 𝑦 ∈ 𝒱, denoted yxd , , so 

=
G

yx daadayxp )()(,)( , (𝜑 ∈ 𝐶𝑜(𝐺))     (4.1) 

Next we show that for 𝑥, 𝑦 ∈ 𝒟, yxd , is a continuous function.  

Let 𝑥, 𝑦 ∈ 𝑀 and )(,, 21 GCo  . 

Then, 

| < 𝑃(𝜏𝜑)𝑢(Ψ1)𝑥, 𝑦 > | ≤ ‖𝜏𝜑‖∞‖Ψ1‖∞𝑣𝑜𝑙(𝑠𝑢𝑝𝑝Ψ1) ∙ ‖𝑥‖ ∙ ‖𝑦‖ 

                                                                 ≤ 𝑐‖Ψ1‖∞𝑣𝑜𝑙(𝑠𝑢𝑝𝑝Ψ1) ∙ ‖𝑥‖ ∙ ‖𝑦‖ 

                                                                 ≤ 𝑐. 𝑣𝑜𝑙(𝑠𝑢𝑝𝑝Ψ1) ∙ ‖𝑥‖ ∙ ‖𝑦‖. ‖𝜑‖∞ ∙ ‖Ψ1‖∞ 

with a constant c determined by the support of 𝜑1so< 𝑃(𝜏𝜑)𝑈(𝜑1)𝑥, 𝑦 > defines a Radon 

measure 𝑑𝜆(𝑎, 𝑏) 𝑜𝑛 𝐺 × 𝐺. For, if𝑓 ∈ 𝐶𝑜(𝐺 × 𝐺), set = H
b dbafaf  ),())(( . 

Then we define 

 

− =
GG G

b dbyxbUfPbadbaf ,)()(),(),( 1                              (4.2) 

Applying Fubini’s theorem, we then compute 

G yUxU ada )()( )(,)( 21  =< 𝑃(𝜏𝜑)𝑢(Ψ1)𝑥, 𝑢(Ψ2)𝑦 > (by (4.1)) 

                                      
dcycUxUPc

G
= −

 )(,)()()( 1

12   

                                      
dcyxcRUcRPc

G
=  ,))(())(()( 12   

                                        
=

GGG
dcbadbcacc ),()()()( 12       (by(4.2)) 

                                        

−−− =
GGG

dcbadacbacac ),()()()()( 11

1

1

2   

(Here change of variables in the c-integration has been made). 



 Aca. Intl. J. P. Sci. 2023;01(2):20-30  29 
 

Further, 

daahcd yUxUyUxU )()( )(,)()(,)( 2121  =  

where 

  

−−− =
GG

yUxU badacbacach ),()()()()( 11

1

1

2)(,)( 21
 is a continuous function on 𝐺.  

Thus )()(,)()( 21
ah yUxUgU  is continuous in (𝑔, 𝑎) and more generally for 𝑥, 𝑦 ∈ 𝒟 that 

)()(,)( 21
ah ygUxgU is continuous in ( )agg ,, 21 . 

Now, we introduce a sesquilinear form on 𝒟 × 𝒟: )(),( , ehyx yx= .  

To see this, we have the following points:  

0)(),( , = ehxx xx                                                        (4.3) 

),()()())(,)(( )(,)( yxehyUxU yUxU   ==        (4.4) 

=
G

L dayaUxaUayxP ))(,)(()(,)(                     (4.5) 

Now, suppose 𝒱′ = 𝒟
𝑘𝑒𝑟𝛽⁄  and 𝐿(𝜉)[𝑥] = [𝜌(𝜉)−

1

2𝑈(𝜉)𝑥] . 

 

Then < 𝐿(𝜉)[𝑥], [𝑦] > = 𝜌(𝜉)−
1

2𝛽(𝑈(𝜉)𝑥, 𝑦) is continuous and 𝐿 is a unitary continuous 

representation of 𝐻 𝑖𝑛 𝒱′.For 𝑥 ∈ 𝒟, 𝑓𝑥(𝑎) = [𝑈(𝑎)𝑥] is a continuous function on 

𝐺  verifying 

𝑓𝑥(𝜉𝑎) = 𝜌(𝜉)
1

2𝐿(𝜉)𝑓𝑥(𝑎)(𝜉 ∈ 𝐻, 𝑎 ∈ 𝐺), again 𝑊: 𝑥 → 𝑓𝑥 extends to an isometry from 

𝒱 𝑜𝑛𝑡𝑜 𝒱𝐿 intertwining (𝑈, 𝑃) and (𝑈𝐿 , 𝑃𝐿) as required. 

 Indeed we see that  

 =
G

L daagafagfP )(),()(,)(   for Fgf , and with finite norm together 

with (4.5) prove that 𝑊 intertwines 𝑃and LP .  

The uniqueness of 𝐿 follows from 

(𝑈𝐿, 𝑃𝐿) = (𝑈𝐿′
, 𝑃𝐿′

) 

which is equivalent to 

𝐿~𝐿′ 
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