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Abstract

This work delves into the intricate realm of induced representations, offering an exhaustive
examination of three pivotal theorems in the domain of induced representations pertaining
to locally compact groups. These three theorems, specifically, are the theorem on induction
in stages, the imprimitivity theorem and the intertwining number theorem. These theorems
are central to understanding how representations are constructed, related, and interwoven
within the framework of group theory.
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1. Introduction

Let G be a locally compact group. Let xbe a left Haar measure on G. The following
definitions serve as a bedrock for the sequel [1-3]

Definition 1.1.Let x be a Borel measure on G.Then for each x, there exists a number

A(X) = 0such that g, = A(x) . The function A: G — R is called the modular function of G.

If A= 1, then Gis said to be unimodular.

Remark 1.2. From the definition above (1.1), we deduce the following:
(@) A is continuous, and
(b) A(x,y) = A(x)A(y) forall x,y € G.

Definition 1.3. Let f be a continuous function on a topological spaceX. The support of
fwritten supp(f) is the closure of {x € X: f(x) # 0}.

C, (X) denotes the set of continuous functions on X with compact support.

Now, let H be a closed subgroup of G.

Let right invariant measure daon G and d¢ on Hwith corresponding modular functions A
and 6 respectively.

In particular, for any integrable functionfon G,

jG f (ba)da=A(b™) L f (a)da
.L f(a")A(@a™t)da= L f (a)da, and similarly for 5 .
In addition, let p(&) = 6(E)A(E) foréeH .
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Let m: G —» M be the canonical projection onto the space of left cosets M = % and let

7 be the averaging map (z¢)(z(X)) = j P(&)dE (x e G)forpeC,(G).

Suppose L is a continuous unitary representation of H on a Hilbert space V and let F"be
the set of functions

f:G - V satisfying:
@ f(&)=p(£)2LE)f(a) thatis,

1 1
f(&)=6(5)?A() ?L(5)f(a) (6 €EH,a € G)
(b) |If (@)]|? is locally integrable, that is,
[IIf (@3 da < o where |||l is anorm in V
(c) f is strongly measurable, that is, ||f(a)|lis measurable and < f(a),v > (v € V)
and for every compact subset V, of Vsuch that f(a)eV,(almost everywhere in K).

Next, we show that F*defines an inner product space, with the inner product:
<f,f,>=[ < f,(a), f,(2) > da.
The proof is given in five points:

(i)  <f,f>=]<f() fa)>da.

= [ It.@ da>o0.

(ii) Here we show that < f;, f; > = 0 ifand only if f; = 0.
Let< f,, f >= 0. Then jG|| f1||2da=O.That is,||fi(@)]| = 0, and so,f;(a) = 0, forall a €
G.
Therefore f; = 0.
Conversely, if f, = 0 then f;(a) = 0 forall a € G, that i, L |f,(a)|"da=0and.
ThUS,< fllfl >=0.
(iii) Let f1, fo and f5 be functions in F*
<fi+ff>=[ <(f,+1,)(), f,(2) > da

:J.< f,.(a)+ f,(a), f;(a) > da.

Since V is a Hilbert space,

< fi(a) + f2(a), f3(a) > =< fi(a), f3(a) > +< fr(a), f3(a) >.

Therefore,
<fi+ 1, f,>=[ < f,(a), fy(a) >da+[ < ,(a), f(a) > da

And so, <fitfofza>=<fi,fs3>+<fo,f3>
(iv)LetAe Kand f;, f, € F*

<A, f,>= L< (4f)(@), f,(a) > da
- L< Af,(a), f,(a) > da
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= J.G/i < f,(a), f,(a) > da(since V is a Hilbert space)
=,1jG< f,(a), f,(a) > da

That |S,< Afl’fZ > = A < fl,fz >,
(V) Let f1,fo € F*
<f,f,>=[ <f(a),f,(a)>da

= jG< f,(a), f,(a) >da

= [ < f,(a), f,(a) >da

That |S,< fl,fz > =< fZ’fl >,
Hence F* defines an inner product space, say H c F*

Lemma 1.4. For f € F* and ¢ € C,(G) , iy 701> L If (a)||2go(a)da is a Radon measure

on M that is, a continuous linear functional on C,(M). Then

[ It @[ pa)da=| (zp)(p)d,, (p)

Now, forf e F*, Let ||flI>=us;r(M) and letH" = {f € F*: ||f|| < oo}/{f € F*:
1l = 0}

Then (UL(g)f)(a) = f(a-g) (a,g € G) defines a continuous unitary representation U~
in HL of G.Utis called the induced representation of L from H to G [4- 7]. In this section,

we discuss the theorem on induce in stages. However, we first introduce a function called
€ — map and elaborate on its properties.

2. Induction in stages

In this section, we discuss the theorem on inducing in stages. However, we first introduce
a function called e — map and elaborate on its properties.

Letf € C,(G)andveV.

We form

e (Fv)x= 5(&) 7A(E)e F(&0L() vdg

e(f,v) has its support contained in HK if the support of f is K.

Let F, be the subset of F* consisting of functions that are continuous with compact support
modulo H.

Thusk, € {f € F*:||f|| < o}. Then e(f,v) € F,.

Definition 2.1.We say that a subset S of a topological vector space V is total if the linear
manifold spanned by S is dense in V.

In the following, we give two key properties of the e — map [8]:

Lemma 2.2. (a) If K is the support of £, then |le(f, v)|| < AlIfll¢IlvII

(b) If D is total in a Hilbert space V, then €(C,(G) x D) is total in .

We end this section by giving a proof of the theorem through induction in stages following
Blattner’s version [8-12].

Theorem 2.3. Let H; and H, be closed subgroups of G with H; € H,. Let L be the unitary
representation of H; on a Hilbert space V and denote the inductions of L to H,and G by M
and U respectively. Then U is unitary equivalent to UM,
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In some other notations, we write:
ind (G,H,,L) ~ ind(G,H,,ind (H,, Hy, L))
or
ind bGll ~ind I-(I;Z indgi .

Proof. Suppose &, 8, and A are the modular functions for H,, H, and G respectively. Let
FMO F@ and F be the spaces for the inductions fromH; to H, , H, to G and H; to G
respectively.

Let f € F, with support in the compact set H; K

1

1

Forn € Hy,x € G, let f(11,x) = 8,(n) " 2A()zf (17) (2.1)
Let x be fixed.
Then f(&n,x) = 8,(En)"2A(En)2f (Enx)

~ 62@1)‘%62 (p)‘%A@%A(@%A@)‘%& (©ELE)f (1)
= 6,(5)726,(§)28,() AL ()
= 5,(8)728, ()L f (n,x) (from (2.1))

A (( € H,n € Hy) A
Furthermore, f (-, x) is a continuous with support in Hl(Kx‘1 N KZ). So f(+,x) belongs to

F, that we denote byf (x).
Now, letn,é € H,,x € G,
fn.8x) = 8GN 7Am)f (ngx)  (from (2.1))
= 8,(m) 2A(m)z2A(MQ¢) 26,(n{)zL(m{) f(x) (from the definition of F*)
= 8,(1) 2A(m)2A(n) 2A(S) 26, (1)282(0)2L () f (x) (from the definition of a
modular function )
1 1
= 6,(¢ )fA(C )‘fL(nC )1f (€3] )
= 8,(0)2A(0) ZA(10)28, (1) 2 f (14x)
= 5,(0)2A() 2 (ngx) ~ (from (2.1))
Hence,
fGx) = 8,(0)2A() 2Me f (x) -
The support of £(-) isin H,K.
To show continuity, suppose N is a compact neighborhood of e in G and choose h € C,(G)
50 that IH h(&)d& =1on H;KN .

Then
jH h(Em)d& =1 for n € Hy(KNx™ n Hy)

Thus, | £ 00— F (] = [, hopof 2.0~ F 1. y)| d

1 2

= [}, hep|6,r) 287 £ 6p) =5, () 2 AG)? ()] dn
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1

-I. h(nx)(az (n>‘2A(n)2j I Gp- £ G dn

= IHZ 8,(m) A f (%) — f ()| d 7y
whenever y~1x e N.

Clearly £ is here uniformly continuous on compact sets, and so it is continuous. Then £(-)
belongs to F®, and will be abbreviated asf .

2
= J,, &) A f () .
Let k eC,(G) such that jH k(rx)dr =1onH,K .

Now, Hf (x)‘

Then due to the Fubini’s theorem and the Haar measure’s preservation under group action,
we have:

i =Ll o
= [LJ,, KGO0 AG)hp| £ (po) e
= [, [LKCOAGS, 7)1 f (om0 dxdy
= [ kG 08,07 o] £ (9] dxay
= [, 00t 0OFF| ], ke e
= J,h0O[ f (9 dx (since [ k(m)d7 =1)

=|f ||2 (by the choice of h and k).
Hence f — £ is an isometry of F, onto F*,
Next we prove that the image of F, is dense in F.?).
LetgeC,(H,),heC,(G), v e Vand take

k(x) = IHZ 5,(£) 2A(£)?9(£) *h($)dS € C,(G).
Then

e (kW) =, 5.(6) 7A)?k(S) L) vl
=], [, 809 A& 5,(6) *A)? 9(¢)*h(e&) L) vdgdé

=[], 8.0 26,(0) M) 9(0) (GO L) Hvddds

S0 that,

e(k,v)\(n,2)= |, [, 6.(&) 28,(¢m) 2AGEM* 9(¢) (&) L) vdldg
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=[] 69 26, ™) 2A0)? 9(&ng H(GI L) vd(ds

=], 5:(&) 2AQ)?h(E0) [, 6.(8) 26,(§) 9(&ng L&) v (dg

Take €, and €, as the e —maps for the inductions from H;to H, and H,to G
respectively.

Then we have e(k,v)" = €,(h, €,(g,v)).

By Lemma 2.2, the set €,(C,(G)) X €,(C,(H,) x V) is total in F®, This shows that the
image of F, in F/?is dense. Therefore, the map f — f can be extended to a unitary map

of F onto F®_ This proves the desired equivalence.
m

3. The intertwining number theorem

In this section, we first state some pre-requisite facts needed for a standard proof of the
intertwining number theorem.

Definition 3.1. A one-parameter subgroup of a Lie group G is an analytic homomorphism,
say Ofrom R to G.

Now, let G be a Lie group and V a unitary representation of G on the Hilbert space % .Let
X € g, the left-invariant Lie algebra of Gand let X(-) be the one-parameter subgroup of G
such that

(XF)(y) = D, f (yx(t))|,, for all f eC;(G).

dV (x) denotes the skew-adjoint infinitesimal operator generating the one-parameter
unitary group V,,in K.

Let %, be the largest submanifold of % contained in N [dom(dV(x)):X € g] and it is

invariant under dV(g).
Since dV(X)V, :Vde(ady,IX) X € g,y € G,Kis V-Invariant.

Denote the restriction of dV to K, by oV .
The following two lemmas are extracted from the work of Blattner [8]:
Lemma 3.2. Suppose V'and V *are unitary representations of G on the Hilbert spaces
K'and K2 respectively. Let A € R(V1,V?), the set of operators intertwining V'and V °.
Then AKL < K2 .Furthermore, AdV'(X)coV?(X)Afor X € L where L is the
enveloping algebra of the complexification of g.
Lemma 3.3. Suppose f eC.(G) ,ve V. Then e(f, v)eH . Furthermore,
oUL(X)e(f,v) = e(Xf,v) foreach X € L.
Definition 3.4.
(@) An elliptic element is an element which is regarded as a left-invariant (analytic)
linear differential operator.
(b) ., denotes the domain of all operators of the differential representation aU* of
the enveloping algebra £ of the Lie algebra g of G.
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Theorem 3.5.
LetV be infinite-dimensional. ThenH,, € C(G;V). Furthermore, suppose that X is an

elliptic element of L of order m>%wheren:dim%. Then for all compact

subsetsk of G, there exists a constant ¢, such that ||g, < ¢, (”au “(X,)g]+ ||g||) forallg €

He.

Now, consider two closed subgroups H, and H, of a Lie group G with modular functions
5, and &, respectively. Let L be a unitary representation of H, on the Hilbert spaceV;, i =
1,2. yt® operates on H®. L(V;,V,) is the space of all bounded linear operators of

V; into V, endowed with the bounded convergence topology.
We assume dimV, < oo,

For every A € ER(UL(”, UL(Z)), we define a linear mapr,from C;(G)to the set of linear
maps of 7V,intoV, as follows: for every feC/(G)andv € Vy,setr (f)v =

(Ae(f,v))(e).

For (&,,&,) € H; x H, and any function fon G, we set (pe,, €,f) = f(§71x&,), x €G.
Now, we can state the main result of this section:

Theorem 3.6.(Intertwining Number Theorem) [9,13,14]

Let X, be an elliptic element of £ of order greater than %dim(% j.For f €C;(G),set
2

v, =IXo e+l
For each relatively compact open set O of G, endow C_ (O)with the topology induced

|t

by|l-|lx,; endow C;°(0)with the corresponding inductive limit topology. Suppose M is the

subspace of maps
z € L(CP(G); L(Vy; V) such thatz(p, . f)=

61(1)28,(8,)2A(6,E1)2LP (£)z(F)LDV (§,) 7 for all(§,,&,) € Hy X H, and all f €
Co (G).

Then the map A - 1, is a faithful linear map of R (UL(”, UL(Z))into M.

Proof. Letv eV, A€ SR(UL(”,UL(Z)), f eC?(O)and O a relatively compact open

subset of G.
By Theorem 3.5,

s (vl < Ciey (|| U7 Ko)a € (£,0) || + 114 € (£, )11 (31)
By Lemma 3.2, aUL® (X,) A € (f,v) = 40UL™ (X,) € (f,v).

Moreover by Lemma 3.3, we obtain Ut (X,) € (f,v) =€ (X, f,v),and so,

UH? (X,) € (f, v) = A € (X f, ).

Thus, [lra(fvll < Cey(lA € (Xo f, V)11 + (1A € (f, v)ID)

= Ciey([14lllle (X f, )1l + llAllllEe (f, »)ID
= CgyllAlldle Xof, Il + llE (f, »)ID
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By Lemma 2.2,||€ (X, f, V)|l < Ak, [IXofll¢llvl and
e (F, vl < Ak, I fll Il

Therefore (3.1) becomes

I (Ol < CellAl Ak X f IVl + Ak, I fllG NIVl

< CpllAlI A NIl AIXo flle + 1 ll6)

where A, = max{Ax,, A, }
Moreover, by hypothesis, [|X,fll¢ + lIfllc = IIf1lx,-
Hence, [l7a(Fvl < CgyllAllA vl fllx,and so,74 € L(CS(G); L(VL, Vy)).
Now, let r, =0. Let f eC,(G)and v € V;.
For every x e G, we have:

(Ae(f,v)x) = (UXL(Z) A€ (f, v)) (e) but U4 = au (since A€
RUHY,UL))so (4 € (£, 1)) = (401" € (£,0) (o)
= (A€ (RS, 1) (e
However, (4 € (f,v))(e) = ru(fv forall f € C(G)and v € V.
Thus, (4 € (f,1))(x) = A (Re ) (V) (3:2)

Sincer, =0,(4 € (f,v))(e) = 0.
Then by Lemma 2.2, A = 0on € (CF(G) X V,), atotal subset of ™1 and so r, is one-to-

one, that is faithful(since ker (r,) = {0}).
Next, we prove that r, € M.

Letf eC/(G), v € Vyand (&,,&,) € Hy X H,.

Then (.o, FAV) = 1a(Ree o
=(Ae(,. .f ,v))(§2 (from (3.2))

=0 (9‘2)2 A&,)2 :LO (&)l Ale f )by property (a) for functions of F*

Additionally,
(e F V0=, 5,6V 2A) £ (150 (6) valz
=[, a5 Y2 AGE): (AL E VS, (5)dé
= @(@)&A(@)&(f LO(EVKx)
Thenr, € M.

|
Remarks 3.7. (1) If V; and V, are representations of a Lie group G, then dimR(V,,V,) is
called the intertwining number of V; and V, and is denoted by I1(V;,V5).

(@ 1 (U, U+ < dim M,

4. Imprimitivity
In this section, we will delve into the details of the imprimitivity theorem following the
version of Bent Orsted [15]. This method is different from the classical proofs found in
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some literatures [10,16-21]. We equally note that if we let(PX(W)f)(a) =
¥(rm(a)f(a)(f € HL, W € C,(M)), then the pair (UL, PX) is called an induced system of
imprimitivity.

Theorem 4.1.(Imprimitivity Theorem)
Let U be a continuous unitary representation of G inV. Let P:C,(M) = L(V) be a
homomorphism withP(C,(M))V dense inV and
U(g)P(P)U(g)~! = P(R(9W¥)(g € G, ¥ € C,(M))
where (R(g)¥)(m(x)) = P(m(xg)).
Then there is a unique continuous unitary representation L(up to unitary equivalence) of a
closed subgroup H of G inaHilbert space V! such that (U, P)~(U*%, PL) that is there exists
a unitary operator W:V — VL such that
WU(g) = U*(g)W(g € G)
WP(W) = PL(P)W (¥ € C,(M))
Proof. Considering that the kernel of P is invariant under translations, we grasp that
[P(P)|| = |¥]l o, the supremum norm of .
Next, let us examine the Garding domain
D = span{U(@)x|x €V, € C,(G)}
where U (p) = L p(a)U (a™t)da
and the Radon measure @< P(zp)X,y > for x,y € V, denoted dg, ,, so
< plep)x,y >= [ p(@)du, (a)da(p € C,(6)) (4.1)
Next we show that for x,y € D, du, , is a continuous function.
Letx,y € Mand ¥,,¥,,peC,(G).
Then,
| < P)u(P)x,y > | < lltgllollPillovol(supp¥y) - llx|l - Iyl
< cl|®; [l vol (supp®y) - x| - Iyl

< c.vol(supp¥y) - llxIl - Iy ll- el - P11l
with a constant ¢ determined by the support of ¢,50< P(t@)U(¢,)x,y > defines a Radon

measure dA(a, b) on G X G. For, iff € C,(G X G), set f,(r(a))= jH f (£a,b)dé.

Then we define
L _f(a,b)di(a,b)= jG< P(f.)U (b )x,y>db (4.2)

Applying Fubini’s theorem, we then compute
L 2@ty sy (B) =< Pz )u(Wy)x, u(W,)y > (by (4.1))

= [2(©) <PEAU XUy >dc

= [ 12(0) < PRV (R )%,y > de

= [ @f [, @0y be)da@b)de  (by(4.2))
=[,0@ [ v-@ e (bac)A@ )da(a,b)de

(Here change of variables in the c-integration has been made).
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=

Further,

ALt; (00 w2y (€) = My xu )y (B)D
where

My xuayy (€)= ”G G1//2(a’lc)r,zfl(ba’lc)A(a’l)dxl(a, b) is a continuous function on G.
Thus 1 (g xu sy (B)iS continuous in (g,a) and more generally for x,y € D that

My (g0 gy (@) IS CONtinuous in (g,,g,,a).
Now, we introduce a sesquilinear form on D X D: B(x,y) =h,  (e).
To see this, we have the following points:

p(x,x)=h, (€)=0 (4.3)
BUEXU(D)Y) =Ny u ey (€)= P(E)B(XY) (4.4)
<P (zp)x,y >= L p(@)pU(a)x,U(a)y)da (4.5)

Now, suppose V' = D/kerﬁ and L(&)[x] = [p(f)_%U(f)x] :

1
Then < L(&)[x], [y] > = p(é)2B(U(é)x,y) is continuous and L is a unitary continuous
representation of HinV'.Forx € D, f,.(a) =[U(a)x] is a continuous function on
G verifying

fr(éa) = p(&)2L(&)f,(a)(§ € H,a € G), again W:x — f, extends to an isometry from
V onto V* intertwining (U, P) and (U%, PL) as required.

Indeed we see that

<P (rp) f,g>= J'G(p(a)< f(a),g(a)>da for f,geF"and with finite norm together

with (4.5) prove that W intertwines Pand P" .
The uniqueness of L follows from
(U, PHy = (UY, PY)
which is equivalent to
L~L
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